Advanced Automated Mineralogical and Petrological Analysis

Dr. John S Thella

Research Microscopy Solutions Geosciences Research ZEISS Group John.Thella@zeiss.com

21 December 2022

Natural Resources Team

Dr. John S Thella RMS-Natural Resources Zeiss, India

Dr. Rich Taylor Application Development Specialist Zeiss, U.K

Dr. Eddy Hill Sector Manager (Nat Res) Zeiss, U.K.

Dr. Shaun Graham BDM (Materials Research) Zeiss APAC

Prof. Vishwanath. U Consultant-Geosciences Zeiss, India

Key Contact:

Dr. John S Thella Email: john.thella@zeiss.com ZEISS Mineralogic Global Presence - Mining Focus commodities Fe – Cu – Mo – Zn – Ag – Au – Ni – P – Coltan – Qz – O&G – Steel

ZEINN

ZEISS Mineralogic Global Presence - Mining Focus commodities Fe – Cu – Mo – Zn – Ag – Au – Ni – P – Coltan – Qz – O&G – Steel

Advanced Geoscience Research spans multiple length scales and requires a Connected Microscopy

Correlation, Contextual & Quantitative Multi-modal, Multi-scale, Multi-microscope

EM in Geosciences

Imaging and quantitative analysis, flexible detector solutions

Petrologist toolbox

Imaging, chemical and structural analysis

Mineralogic

Automated mineralogy Quantitative geochemistry Flexible platform

Correlative Microscopy at ZEISS

2 key points

1. Class leading instruments

2. Correlation makes data greater than the sum of its parts!

Correlating Chemistry With Optical Mineralogy

Optical microscopy is:

- Familiar
- Fast
- Combined with machine learning provides a new level of understanding

Electron microscopy is:

- Automated
- Detailed
- High resolution mineralogy
- Provides chemical as well as morphological information

Correlate LM + EM for enhanced mineralogical understanding

Supported Platforms

- Available on:
 - Sigma 300 and 500
 - EVO
 - GeminiSEM 360/460/560
- No restrictions on accessories or available detectors other than those imposed by the configurator
- 1 or 2 EDS up to 100mm²

ZEISS, Automated Mineralogy and Mineralogic An Introduction & History

What is Automated Mineralogy (AM)

Specific outputs with a long history

Automated Mineralogy serves two parallel purposes that must operate in tandem

Quantitative textural analysis

- Image based
- Grain shapes/morphology
- Grain sizes
- Liberation
- Locking
- Associations

Phase ID

- Apply mineral labels to textures
- You have to know who is who!

Strengths

It's fast! It works!

Weaknesses

- Complex black box approach
- Non-transferrable

Mineralogic Automated Quantitative Mineralogy

• Bulk Chemistry to 1000ppm without the need for XRF nor EMP

Sigma 300 VP

- From nm to cm imaging and analytical resolution
- Mineralogy
- Grain morphology, including density and mass
- Chemical Assay
- Element Deportment
- Mineral Associations
- Liberation
- Acid Consuming Gangue Deportment
- Soluble Vs Insoluble Mineral Distribution
- Theoretical Grade Recovery Curve
- Environmentally Toxic Mineral Deportment

Analyses With Energy or With Standards Calibration

ZEINN

ZEISS Mineralogic 2D A short demo

1.Input image

2.Identify areas of interest to measure

3.Image Analysis

4.EDX Quantification & Classification

Mineral Classification Options

 Quantitative EDS – classification is independent of the system being used and is solely based on stoichiometry.

 BSD greyscale – the ultra high contrast backscatter detector from ZEISS enables discrimination of minerals with a Δa.m.u. ~ 0.07.

Elemental ratios – as the system quantifies, mineral classification can be further discriminated by relative abundances of elements.

 Morphology – mineral shape characteristics can be included in the classification for ultimate mineral discrimination.

Backscattered Electron Image

Vitreous Goethite

"Mineralogic" Classified Image

Ochreous Goethite

Analysis Modes Mapping

Full Mapping

Place a grid over the entire sample and perform quantitative EDX at each point. Assign mineralogy to a pixel of a user defined size (down to nanometre scale)

Grains are classified by their chemical composition with each colour representing a distinct phase and each pixel an analysed point

Analysis Modes Mapping

35 mm

- Highest resolution
- Pixel by pixel chemical analysis and classification
- Illuminate chemical zonations and transitions

ZEISS

Analysis Modes Spot centroid

Full Mapping

Place a grid over the entire sample and perform quantitative EDX at each point. Assign mineralogy to a pixel of a user defined size (down to nanometre scale)

Spot Centroid Analysis

Quantitative EDX analysis at the geometric centre of the grain. Assign the mineralogy measured at the centre to the entire grain.

Analysis Modes Spot centroid improved analysis with image processing

ZEINN

Analysis Modes Spot centroid

- Fast and efficient
- One composition assigned to particle
- Image processing allows analysis of grains

Analysis Modes BSE

Full Mapping	Spot Centroid Analysis	BSE
Place a grid over the entire sample and perform quantitative EDX at each point. Assign mineralogy to a pixel of a user defined size (down to nanometre scale)	Quantitative EDX analysis at the geometric centre of the grain. Assign the mineralogy measured at the centre to the entire grain.	 Use BSE brightness to classify minerals Very fast, no need for EDX Resolution of BSE imaging

Analysis Modes BSE

9.3 microns

- Analysis and classification at image resolution
- Fastest analysis mode per data provided
- Improved BSD offers image capture at 220ms per frame

Analysis Modes BSE

- Easy discrimination between hematite and magnetite by BSE grey level
- No need to stretch BSE histogram
- Bulk mineralogy results at the speed of imaging

Analysis Modes Line scan

Full Mapping

Place a grid over the entire sample and perform Standards Based and Standardless EDX at each point. Assign mineralogy to a pixel of a user defined size (down to nanometre scale)

Spot Centroid Analysis

Standards Based and Standardless EDX analysis at the geometric centre of the grain. Assign the mineralogy measured at the centre to the entire grain.

BSE Only

BSE analysis is designed to be a quick analysis whereby minerals are classified on their BSE grey level. Precious metals (Au, Pt, Pd etc.) have a high BSE (Z value) coefficient.

Line Scan

A line is drawn across the centre of the particles where an analysis is carried out. Designed to gather a fast idea of the bulk mineralogy of the sample

Analysis Modes Line scan

Full Mapping

Place a grid over the entire sample and perform Standards Based and Standardless EDX at each point. Assign mineralogy to a pixel of a user defined size (down to nanometre scale)

Line Scan

A line is drawn across the centre of the particles where an analysis is carried out. Designed to gather a fast idea of the bulk mineralogy of the sample

Spot Centroid Analysis

Standards Based and Standardless EDX analysis at the geometric centre of the grain. Assign the mineralogy measured at the centre to the entire grain.

Feature Scan

The beam is rastered over a mineral grain and the resulting EDX spectrum is quantified and the mineralogy is assigned to the entire grain.

BSE Only

BSE analysis is designed to be a quick analysis whereby minerals are classified on their BSE grey level. Precious metals (Au, Pt, Pd etc.) have a high BSE (Z value) coefficient.

Analysis Modes Line scan

Full Mapping

Place a grid over the entire sample and perform Standards Based and Standardless EDX at each point. Assign mineralogy to a pixel of a user defined size (down to nanometre scale)

Line Scan

A line is drawn across the centre of the particles where an analysis is carried out. Designed to gather a fast idea of the bulk mineralogy of the sample

Spot Centroid Analysis

Standards Based and Standardless EDX analysis at the geometric centre of the grain. Assign the mineralogy measured at the centre to the entire grain.

Feature Scan

The beam is rastered over a mineral grain and the resulting EDX spectrum is quantified and the mineralogy is assigned to the entire grain.

BSE Only

BSE analysis is designed to be a quick analysis whereby minerals are classified on their BSE grey level. Precious metals (Au, Pt, Pd etc.) have a high BSE (Z value) coefficient.

Fast Scan

A faster way to obtain a quick scan of a grain. Several point analysis can be performed on each grain with larger grains analysed at more points than smaller grains

Live Particle Images Chemistry, classification, and morphology revealed as you move over the image

ZEINN

Bulk Data

Bulk data includes the modal mineralogy that can be sorted by area %, weight %, average grain size, grain size standard deviation and also includes average composition of the mineral classification based on the quantified chemical analyses.

Target Mineral	Number	Area %	Weight %	Grain Size (μm)	Grain Size Std Dev (μm)	Average Composition
Pyrite	103790	32.9	46.2	27.96	24.66	Fe 50.63; S 49.28; Zn 0.09;
Quartz	61663	35.1	26.4	36.48	37.04	Si 56.61; O 42.48; Al 0.91;
Chamosite	54144	10.2	8.70	19.22	25.01	O 32.43; Fe 30.75; Si 16.49; Al 14.09; Mg 6.18; Mn 0.05; Ca 0.01; Cr 0;
Mica	92813	9.84	8.38	14.33	19.63	O 38.41; Si 27; Al 19.34; K 7.57; Fe 6.6; Mg 0.97; Cl 0.05; F 0.03; Na 0.02;
Chalcopyrite	15125	2.33	2.77	18.42	19.02	Cu 36.39; Fe 33.2; S 30.42;
Sphalerite	8348	1.17	1.35	16.53	19.32	Zn 67.59; S 28.55; Fe 3.86;
Berthierine	75686	1.27	1.22	6.09	4.86	Fe 38.6; O 25.74; Si 20.43; Al 15.23;
K Feldspar	50623	1.67	1.21	9.01	9.88	O 41.16; Si 35.06; Al 15.01; K 7.79; Fe 0.81; Ba 0.11; Na 0.04; Ca 0.02;

Mineralogic Outputs Assay and Distribution

	Weight									
Target Mineral	%	Assay(S)%	Assay(Ti)%	Assay(Cu)%	Assay(As)%	Assay(Ag)%	Assay(Sn)%	Assay(Sb)%	Assay(Au)%	Assay(Pb)%
Sample		23.48	0.22	1.42	0.05	0.01	0.03	0.01	0.004	0.33
Chalcopyrite	2.77	0.83	0.0001	0.99	0.0001	0.0003	0.0002	0.0003	0.00001	0.0001
Pyrite	46.22	21.76	0.02	0.20	0.04	0.01	0.004	0.01	0.001	0.01
Bornite	0.15	0.04	0.000102	0.09	0.00004	0.00001	0.00001	0.0001	0.0000004	0.00001
Chalcocite (Fe)	0.03	0.01	0.000007	0.03	0.000002	0.000002	0.000001	0.000002		
Enargite	0.05	0.01	0.000003	0.02	0.01	0.000004	0.000003	0.002		0.00004
Covellite (Fe)	0.02	0.01	0.000014	0.01	0.00001	0.000004	0.0000004	0.00001		

Target Mineral%%%%%%%%SampleChalcopyrite2.773.520.0469.680.262.450.792.400.200.04Pyrite46.2292.677.9814.2165.2464.5513.8340.2736.543.79		Weight	Distibution(S)	Distibution(Ti)	Distibution(Cu)	Distibution(As)	Distibution(Ag)	Distibution(Sn)	Distibution(Sb)	Distibution(Au)	Distibution(Pb)
Sample Chalcopyrite 2.77 3.52 0.04 69.68 0.26 2.45 0.79 2.40 0.20 0.04 Pyrite 46.22 92.67 7.98 14.21 65.24 64.55 13.83 40.27 36.54 3.79	Target Mineral	%	%	%	%	%	%	%	%	%	%
Chalcopyrite 2.77 3.52 0.04 69.68 0.26 2.45 0.79 2.40 0.20 0.04 Pyrite 46.22 92.67 7.98 14.21 65.24 64.55 13.83 40.27 36.54 3.79	Sample										
Pyrite 46.22 92.67 7.98 14.21 65.24 64.55 13.83 40.27 36.54 3.79	Chalcopyrite	2.77	3.52	0.04	69.68	0.26	2.45	0.79	2.40	0.20	0.04
	Pyrite	46.22	92.67	7.98	14.21	65.24	64.55	13.83	40.27	36.54	3.79
Bornite 0.15 0.16 0.05 6.10 0.07 0.11 0.02 0.60 0.01 0.004	Bornite	0.15	0.16	0.05	6.10	0.07	0.11	0.02	0.60	0.01	0.004
Chalcocite (Fe) 0.03 0.003 1.77 0.003 0.02 0.003 0.01	Chalcocite (Fe)	0.03	0.03	0.003	1.77	0.003	0.02	0.003	0.01		
Enargite 0.05 0.05 0.002 1.45 14.86 0.04 0.001 14.07 0.01	Enargite	0.05	0.05	0.002	1.45	14.86	0.04	0.001	14.07		0.01
Covellite (Fe) 0.02 0.02 0.01 1.03 0.02 0.04 0.002 0.04	Covellite (Fe)	0.02	0.02	0.01	1.03	0.02	0.04	0.002	0.04		

Nickel Mineral Assay and Distribution A selection of elements

As

Со

Cr

		ZEISS
	Ti	Zn
)3	0.005	0.012

Sample Assay (wt%)	0.012	0.003	0.042	0.047	29.807	17.366	0.0003	0.0	005	0.012
DISTRIBUTION	As	Со	Cr		Cu	Fe	Ni	Р	Ti	Zn
Cobaltoan Gersdoffite Mo	0.7	1.2	0.0		0.0	0.0	0.0	0.0	0.0	0.0
Cobaltoan Gersdoffite	60.1	91.9	0.0		0.0	0.0	0.0	0.0	0.0	0.0
Gersdoffite	28.7	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0
Dwornikite	0.1	0.0	0.0		0.0	0.1	0.2	0.0	0.1	0.0
Pentlandite	0.7	1.8	0.8		0.0	29.7	51.0	3.2	1.1	0.8
Violarite	0.9	1.2	0.1		0.0	11.1	35.1	1.7	0.0	2.1
Horomanite	0.0	0.0	0.2		0.0	0.9	0.6	0.0	0.3	0.0
Godlevskite	0.0	0.1	0.0		0.0	0.1	1.1	0.0	0.0	0.0
Polydymite	0.1	0.0	0.0		0.0	0.0	2.3	0.0	0.0	0.0
Vaesite	0.1	2.2	0.0		0.0	0.0	1.8	0.0	0.0	0.2
Millerite	0.0	0.0	0.0		0.0	0.0	0.6	0.0	0.0	0.0
FeNiS+Silicate	1.5	0.0	0.7		0.0	1.7	3.8	0.0	0.6	0.9
FeNiS+O	1.0	0.0	1.1		0.0	2.3	1.7	0.0	3.0	2.6
NiS-Silicate	0.1	0.0	0.0		0.0	0.0	0.5	0.0	0.0	0.5
Bravoite	0.0	0.0	0.0		1.0	0.0	0.0	0.0	0.0	0.0
Taenite	0.0	0.0	0.0		0.0	0.4	0.8	0.0	0.0	0.0

Cu

Fe

Ni

Ρ

Mineralogic Outputs Liberation

	Liber User (ation defined pa	rameters t	o grade	e locked	d, middl	ling and	l liberat	ed mine	erals				
		Locked		5	Middling Liberated									
Target Mineral	Liberated	Middling	Locked	< 10%	< 20%	< 30%	< 40%	< 50%	< 60%	< 70%	< 80%	< 90%	< 100%	100
Chalcopyrite	53.3	26.1	20.5	8.6	6.3	5.6	4.1	4.6	4.5	5.6	7.2	10.8	37.6	5.2
Sphalerite	52.7	26.7	20.6	9.5	5.9	5.1	4.7	5.2	4.9	6.0	5.6	9.0	33.6	10.3
Bornite	7.1	31.2	61.7	20.4	21.7	19.5	11.1	5.0	3.9	6.9	4.5	4.1	2.7	0.2
Ludjibaite	0.0	0.0	100.0	100.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Covellite	0.0	0.0	100.0	55.7	37.7	6.6	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Copper	0.0	0.0	100.0	100.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Chalcocite (Fe)	0.0	33.3	66.7	18.9	24.7	23.1	18.0	7.9	6.7	0.7	0.0	0.0	0.0	0.0
Chalcocite	0.0	0.0	100.0	24.2	24.2	51.6	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Digenite	0.0	0.0	100.0	62.4	37.6	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Covellite (Fe)	0.0	10.2	89.8	49.8	24.4	15.6	5.1	1.7	3.4	0.0	0.0	0.0	0.0	0.0
Chrysocolla	0.0	0.7	99.3	88.2	8.8	2.3	0.7	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Tenorite	0.0	0.0	100.0	100.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Zn-Chalcopyrite	0.0	0.1	99.9	90.2	8.9	0.8	0.0	0.1	0.0	0.0	0.0	0.0	0.0	0.0
Tennantite	0.0	0.0	100.0	100.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

Particle Liberation and Modal Mineralogy With respect to Pentlandite containing particles

ZEISS	

Composition of Particle	0%	< 10%	< 20%	< 30%	< 40%	< 50%	< 60%	< 70%	< 80%	< 90%	< 100%	100%
Number of Particles	218986	455	121	184	161	68	341	100	56	18	0	180
Average Effective Diameter (µm)	11.3	113.5	23.8	17.6	13.5	17.8	11.5	17.6	27.2	27.3	0.0	7.2
Average Max Diameter (μm)	17.8	173.6	35.7	26.2	19.2	25.5	15.4	24.5	37.9	37.0	0.0	9.6
Average Density	2.3	3.2	3.8	4.0	4.1	4.2	4.4	4.5	4.6	4.7	0.0	4.8
Average Porosity	0.1	3.7	0.4	0.1	0.1	0.0	0.0	0.0	0.2	0.0	0.0	0.0
Particle Distribution (%)	88.1	11.4	0.1	0.1	0.0	0.0	0.1	0.1	0.1	0.0	0.0	0.0
Distribution of Mineral (%)	0.0	23.3	5.7	9.3	5.4	4.3	12.5	12.1	19.1	5.6	0.0	2.8
Cum. Dist. of Mineral (%)	100.0	100.0	76.7	71.0	61.7	56.3	52.0	39.5	27.4	8.4	2.8	2.8
Modal Analysis (Area%)	0%	< 10%	< 20%	< 30%	< 40%	< 50%	< 60%	< 70%	< 80%	< 90%	< 100%	100%
Pentlandite (%)	0.0	0.6	13.9	24.3	33.4	43.0	53.1	64.1	74.1	82.9	0.0	100.0
Bravoite (%)	0.0	0.0	0.1	0.1	0.2	0.1	0.0	0.0	0.1	0.0	0.0	0.0
Dolomite (%)	1.3	0.8	1.4	0.0	0.6	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Dwornikite (%)	0.0	0.0	0.1	0.1	0.2	0.0	0.1	0.1	0.0	0.0	0.0	0.0
Enstatite (%)	69.3	71.6	21.8	15.5	6.4	6.8	4.1	1.1	2.4	0.2	0.0	0.0
FeNiS+Silicate (%)	0.1	1.3	2.5	4.2	2.2	2.8	1.4	0.7	1.3	1.1	0.0	0.0
Godlevskite (%)	0.0	0.0	0.2	0.2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Haapalite (%)	0.0	0.0	0.0	0.2	0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Horomanite (%)	0.0	0.0	0.3	0.3	0.8	1.0	0.5	0.5	0.8	0.9	0.0	0.0
Magnesite (%)	8.0	7.5	6.2	2.4	1.3	0.3	0.3	0.2	0.0	0.0	0.0	0.0
Magnesite - ferroan (breunnerite) (%)	3.4	4.6	2.6	3.0	1.2	1.4	0.3	0.7	0.1	0.2	0.0	0.0
Magnesite-Si (%)	2.7	5.4	1.0	0.8	0.2	0.0	0.1	0.0	0.0	0.0	0.0	0.0
Magnetite (%)	0.8	1.2	2.6	4.8	2.0	2.3	1.5	2.3	1.9	0.9	0.0	0.0
Pyrite (%)	0.2	0.6	14.5	5.8	13.0	5.6	2.5	3.1	2.4	1.3	0.0	0.0
Siderite (%)	0.5	0.9	1.1	1.5	0.9	0.6	0.7	0.8	0.6	0.4	0.0	0.0
Silica 2 (%)	1.6	0.2	0.9	0.9	1.3	0.9	1.4	0.9	0.4	0.2	0.0	0.0
Other (%)	12.0	5.2	30.6	35.9	36.4	35.1	34.0	25.6	15.8	11.9	0.0	0.0

Association

Phase associations are reported as contact associations (example below) and also as locking associations (occur in the same particle but may not have a contact surface)

Target Mineral	Bismuthinite	Bornite	Chalcocite	Chalcocite (Fe)	Chalcopyrite	Covellite	Covellite (Fe)	Digenite	Enargite	Malachite/azurite	Pyrite
Bornite	0.0		0.2	5.2	17.3	0.1	6.4	0.3	0.6	3.3	18.1
Chalcocite		4.2		72.5	0.3	0.1	1.3	8.5	0.1	2.0	0.3
Chalcocite (Fe)		27.0	15.5		3.3	1.0	16.7	11.3	0.0	3.0	4.3
Chalcopyrite	0.0	1.7	0.0	0.1			0.1	0.0	0.3	0.1	25.6
Copper	25.0										
Covellite	0.4	6.4	0.2	9.9			28.9	13.7	1.5	4.6	0.2
Covellite (Fe)		30.4	0.2	15.4	3.8	2.7		3.7	1.2	5.7	5.7
Digenite	0.2	6.6	7.5	47.0	0.2	5.8	16.9		0.1	3.8	0.3
Ludjibaite						12.5	12.5			50.0	
Sphalerite	0.0	0.3			2.2		0.0		0.1	0.0	17.3
Tennantite									37.5		
Tenorite		12.5	37.5							12.5	

Mineralogic Outputs Particle classifications

eld Images Particle Image	es Particle	Data Gene	eral Properties	Bulk Data As	ssay Data Libera	tion Associations	Lithology Bul	k Lithology Che	mistry				
Bulk Data													
	Nuclea	Area	Weight	Particle				Miner	ral Area (%)				
Lithology	Number	%	%	Size (μm)	Carbonates	Chalcopyrite	Enargite	Muscovite	Others	Pore	Pyrite	Quartz	Unclassified
Quartz Sericite	737	28.16	25.67	287.03	0.00	0.11	0.02	41.91	3.27	5.86	3.58	44.74	0.51
Quartz Sericite Porous	109	8.43	7.48	436.84	0.00	0.15	0.00	42.10	3.78	14.53	1.40	37.25	0.80
Quartzite	976	13.42	11.78	136.63	0.00	0.04	0.00	3.01	0.99	3.85	0.26	91.66	0.19
Quartzite Porous	72	1.38	1.19	171.61	0.00	0.19	0.00	4.69	2.97	12.45	0.39	78.93	0.39
Sericite	1870	19.75	18.57	128.26	0.00	0.10	0.04	86.84	2.73	5.75	2.46	1.61	0.48
Sericite Porous	327	10.46	9.58	266.88	0.00	0.16	0.00	77.87	4.18	14.45	1.67	1.17	0.51
Skarn	2	0.01	0.01	126.65	99.07	0.00	0.00	0.00	0.00	0.93	0.00	0.00	0.00
Skarn Porous	0												
Sulphide-Ccp	37	0.39	0.50	137.76	0.00	61.55	6.91	2.20	4.85	0.96	15.24	1.89	6.41
Sulphide-En	10	0.36	0.47	237.92	0.00	7.99	68.59	2.73	6.71	1.81	7.01	0.00	5.16
Sulphide-Py	631	14.27	22.01	186.91	0.00	0.91	0.17	9.53	2.54	2.41	82.23	0.66	1.54
Remaining Particles	4486	3.37	2.73	23.02	0.00	1.48	0.28	38.03	12.46	8.67	13.40	3.86	21.82
Sample	9257			103.80									

<u>Mineralogy by lithology</u>, in this sample note how chalcopyrite abundance in porous quartzite is highest, but much lower in the (low-porosity) quartzite. Note also that this mineral appears dispersed across all *gangue* lithologies with no preferential occurrence in any one, however, overall the sample contains mostly quartz sericite and sericite lithologies, quartzite lithology less abundant. Note although some pyrite is dispersed through all lithologies, it most commonly occurs as large nuggetty particles that are dominated by pyrite (lithology = "Sulphite-Py").

Mineralogic Outputs Particle chemistry

7	51	

Field Images Particle Image	es Particle	Data Ger	neral Properties	Bulk Data	Assay	Data	Liberation	Associat	ions	Lithology Bulk	Lithology Chemistry		
Chemistry Data													
Lithology	Number	Area %	Weight	Average Composition (wt%)									
			%	A	As	Ca	Cu	Fe	к	Mg	Mn	S	Si
Quartz Sericite	737	28.16	25.67	8.08	0.00	0.00	0.06	2.26	3.69	0.10		2.09	32.82
Quartz Sericite Porous	109	8.43	7.48	9.02	0.00	0.01	0.08	1.27	3.99	0.08	1	0.96	32.33
Quartzite	976	13.42	11.78	0.64	0.00	0.02	0.02	0.17	0.25	0.01	0.00	0.17	45.09
Quartzite Porous	72	1.38	1.19	1.26		0.01	0.10	0.36	0.42	0.03	ſ	0.36	43.93
Sericite	1870	19.75	18.57	16.48	0.01	0.00	0.07	2.02	7.45	0.14		1.43	21.18
Sericite Porous	327	10.46	9.58	16.26	0.00	0.00	0.08	1.85	7.28	0.22		1.13	21.06
Skarn	2	0.01	0.01			38.64	4				0.63		
Skarn Porous	0												
Sulphide-Ccp	37	0.39	0.50	0.66	1.47	0.00	27.63	28.32	0.17	0.09	4	33.86	1.57
Sulphide-En	10	0.36	0.47	0.67	13.75	0.03	37.54	7.89	0.22	0.09	4	28.47	0.68
Sulphide-Py	631	14.27	22.01	1.86	0.05	0.02	0.58	39.43	0.78	0.03	0.00	45.26	2.55
Remaining Particles	4486	3.37	2.73										
Sample	9257												

<u>Chemistry by lithology</u>, not a surprise, in this example most of the As is associated with the suphide lithologies, but there may be examples of other copper ores where the As deportment is different; this functionality allows the user to determine the lithological host for the deleterious elements such as As and F.

New features – improved Large Particle Viewer Mineralogic does everything it did before, plus...

BSE, Phase ID, and new element heatmap view – change in the way the database is accessed

Simple interface allows single click controls for many actions

Simple data export Flexible format for external software

Simple data export Flexible format for external software

AI_227101412022.csv

Ca_227101412022.csv Fe_227101412022.csv K_227101412022.csv

Mg_227101412022.csv

> Desktop > Glenelg garnet

Name

- Select elements of interest
- Select folder
- Entire map exported as .csv

	Na_227101412022.csv
	Bi_227101412022.csv
	🔊 Ti_227101412022.csv
	AT AU AV AV AV AV AV

Third party software Importance of integration and geochemical data

Third party software such as **FIJI/ImageJ** are widely used for image analysis **XMapTools** is software designed specifically for geoscience data analysis

- This is only possible with a **flexible**, data stitched, generic **data** output
- Its only meaningful if your data are built on quantitative geochemistry

How does ZEISS Mineralogic work Using quantitative chemistry

Lewisian metagabbro thin section

- Backscattered Electron (BSE) image
- Phase map based on chemistry

Fundamental purpose – classify mineral phases for further analysis

Page 42

How does ZEISS Mineralogic work Using quantitative chemistry

Quantitative thin section geochemistry

- Mineral chemistry
- "Bulk rock" chemistry

ZEINN

ZEISS Mineralogic

Image analysis – phase identification – quantitative chemistry

Application - Crustal Evolution and Tectonics - Quantitative mineral and sample chemistry

How does ZEISS Mineralogic work Using quantitative chemistry

NCFMASTO

NCFMASTO SC09/01 J&W (2011) XRF Composition SC09/01 ZEISS Mineralogic composition P-T pseudosection 14 14 q cpx opx pl ru calculated from **Bulk** g cpx opx pl ilm ru chemistry 12 12 g cpx opx pl ilm ru Ρ g cpx opx pl ilm kbar ₁₀ Peak P-T 10 g cpx opx pl ilm constrained from g cpx opx pl ilm mt g cpx opx pl ilm mt Mineral 8 8 g cpx opx pl mt assemblage observations cpx opx pl mt vinet out g cpx opx g cpx opx pl ilm sp mt 6 6 g cpx opx pl mt pl sp mt g cpx opx срх орх cpx opx pl sp mt pl sp mt pl sp mt 🏸 600 700 800 900 1000 1100 600 700 800 900

Т°С

Т°С

cpx opx pl mt

1100

1000

ZEISS Mineralogic

Image analysis – phase identification – quantitative chemistry

Application - Crustal Evolution and Tectonics including volcanism Internal zonation of minerals

ZEINN

ZEISS Mineralogic

Image analysis – phase identification – quantitative chemistry

Application – Isotope geology and geochronology

Rapid identification of U-Pb dating accessory mineral in geological context

ZEIN

Multi-instrument Workflow and Multi-scale 2D Characterization Danish Geological Survey – Carbonatite / REE

Video contains 8 separate large area data layers.

Each data layer has been captured using the latest automated microscopy technology.

Data layer 7 & 8: False elemental concentration maps displaying the element distribution of REE's La & Y.

Data layer 6: False colored Automated Quantitative Mineralogy Map using the Sigma 300 & Mineralogic

Data layer 5: High-resolution CL tiles of the region of interest using the Sigma 300 & Mineralogic

Data layer 4: High-resolution BSE tiles of the region of interest using the Sigma 300 & Mineralogic

Data layer 3: Stitched tiles to produce a large area low resolution BSE image using the Sigma 300 & Mineralogic

Data layer 2: Cross polarized (XPL) light using the automated / motorized stage on a Axio Imager

Data layer 1: Plain polarized (PPL) light using the automated / motorized stage on a Axio Imager

Software packages for Axioscan 7 GEO: ZEN Pol Viewer, Data Storage, Intellesis, Image Analysis & the Petrographic analysis toolbox

ZEISS

Dr. John S Thella Raw Materials Sector Carl Zeiss Microscopy Ltd

Basic & Teaching software 1: Zen Pol Viewer

ZEISS

Basic & teaching software 2: ZEN Data Storage

ZEN Data Explorer X +		- @ ×
← → C û 🕼 Not secure mi-datastorage.westus.doudapp.azure.com/gallery		
🔢 Apps 🧧 #ZEISS# 🧧 Imported 🐲 Sci-Hub: removing 📒 Deshboards 🚦 skiing 😡 Worldey zeissgroup 🜉 Superesolution 🛞 Issue 😰 Brainloop Web 📙 Project deshboards 🚆 Expert ledder 👵 Amazon.com 📕 Health 🔥 Home - Microsoft A		
ZEN Data Explorer		A administrator
All files -	Q Y ⊡ Default → २	
> June 2020		
> May 2020		
> March 2020		
> August 2019		
N		
۵		

Levels of advanced petrographic analysis

Level 1:

Simple segmentation (e.g. pore vs grain) Morphological object separation (e.g. watershed) Pore throat analysis via the petrography analysis toolbox

Input image data: Single channel Plane Polarized light (Ppol)

Software package: ZEN Intellesis, ZEN image analysis, petrography analysis toolbox for pore throat analysis

Level 2:

Mineral classification (multiple mineralogies)

Morphological object separation

Input image data: Multi channel Ppol + circular pol OR Multi channel Ppol + Multi Xpol processed using the petrography analysis toolbox **Software package:** ZEN Intellesis, ZEN image analysis, petrography analysis toolbox for processing multi xpol data ZEIN

Level 3:

Grain identification using multipol data.

Birefringence solution,

Input image data: Multi channel Xpol

Software package: Petrography analysis toolbox

Digital Petrography Automated multi-polarization

- Multi-slide handling (50-100 slides at a time) with programmatic profile acquisition
- Multimodal acquisition:
 - Multiple spatially registered crossed polarizers (multipol)
 - Brightfield
 - Fluorescence
- Integrated analytical software (ZEN) including power machine
 learning segmentation (Intellesis)

Structural Analysis of Berea Sandstone Fully Digitized Dataset

ZEISS

Structural Analysis of Berea Sandstone Level 1 analysis: pore vs grain Object Separation & Analysis

Mineralogical Analysis of Berea Sandstone Level 2 analysis: Multiple mineralogies

ZEISS

carbonate_2.czi - ZEN 3.0 (ZEN image processing)

File Edit View Acquisition Graphics Macro Tools Window Help

carbonate_1.czi 🔕 carbonate_2.czi 😂

.

🔠 G2 *

? _ 🗆 🗙

Reset 🗹

- *-

Scaling: 1 px/px (measured)

∧ Free

Free KAMI 124./ I GB

4 % 🗧 | Frame Rate: | Pixe

e: Position: B:44·R:30 G:107 B:76 X: 7925 Y: 1 Storage Folder: D:\zen User: Y7MANDRE 000

Level 3 analysis: Phase fitting Berea, Stoer, Permian, metaquartzite

- 200-500Ma
- Completely automated grain identification
- Outputs:
 - Angular solution
 - Separated grain images
 - Grain by grain measurements (size, shape etc)
- Optional level 2 (mineralogy) mask for phase by phase analysis

Level 3 analysis: Phase fitting Metaquartzite

Acknowledgements

- MEGECON Organizing Committee
- MEAI BH Team
- Prof. Vishwanath. U
- Dr. Sharath Kumar (VSKDU, Nandihalli)
- ***** Rakesh M.M (Co-Founder, Mine Magma)
- Carl Zeiss

Seeing beyond